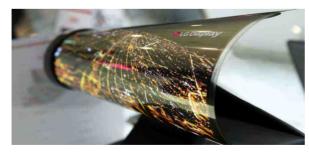


목 차


Ι.	개요 …	•••••••••••••••••••••••••••••••	01
II .	정책동형	•••••••••••••••••••••••••••••••••••••••	04
ш.	기술동항	······································	11
IV.	시장동향	•••••••••••••••••••••••••••••••••••••••	17
V .	산업동향	••••••	23

I. 개요

1. 아이템 개요

- 러기드 디스플레이는 지능형 반도체 분야에 속하는 기술 분야로, 러기드 디스플레이 장치는 제품에 높은 신뢰성이 요구되는 혹독한 환경에서 사용됨
 - 러기드 디스플레이 제품에는 높은 해상도, 넓은 온도 범위에서의 작동성, 넓은 시야각, 높은 대비(contrast), 빠른 응답 및 높은 신뢰성을 제공하는 애플리케이션 디스플레이 패널과 함께 고온 및 압력을 견딜 수 있는 기능이 필요함
 - 이러한 애플리케이션은 신뢰성과 함께 열악한 환경에서 제품의 내부 구성 요소를 보호하기 위해 디스플레이 패널 주변에 보호 유리 및 프레임 구조가 필요함
- 러기드 디스플레이는 극도로 높거나 낮은 온도, 강한 진동, 습하거나 먼지가 많은 사용 조건 등 심각한 환경 및 조건에서 안정적으로 작동하도록 특별히 설계된 디스플레이임
- 디스플레이 분야에서 제품의 경량화 및 소형화가 진행되면서 현재 사용 중인 유리 기판을 대체할 수 있는 가볍고 유연성이 있는 고분자 기판 재료로 폴리이미드(PI)를 사용하고자 하는 연구가 많이 진행
- 최신 전자기기의 휴대성을 늘리기 위한 폴더블, 플렉서블 디바이스를 위해서 고유연, 고경도 디스플레이용 소재의 개발은 필수 요소
 - 스마트폰, 태블릿, 스마트워치와 같은 최신 전자기기에서 디스플레이는 필수 요소이며 이러한 최신 전자기기의 휴대성을 늘리기 위한 폴더블, 플렉서블 전략을 위해서는 고유연 디스플레이의 개발이 시급

- 웨어러블 디바이스의 시장이 커짐에 따라 이에 적용할 수 있는 플렉서블 디스플레이가 필요하여 차세대 전자기기의 개발에 고유연, 고경도 디스플레이 소재가 필수
- 디스플레이용 필름소재, 투명전극 및 편광판/편광필름 등의 고유연· 고경도 디스플레이용 소재는 꾸준한 수요 증가 추세에 있으며, 국내외에서 많은 연구와 사업화를 위한 노력을 전개 중
- 고유연·고경도 디스플레이 소재는 평면 디스플레이와 달리 접거나 휠 수 있는 등 형태를 변형시킬 수 있는 차세대 디스플레이 소재를 통칭
 - 플렉서블 디스플레이(Flexible display) 및 롤러블 디스플레이(Rollable display) 구현에 있어 핵심 소재 기술
 - 스트레처블 디스플레이(Strechable display)에는 포함되지 않는데, 이는 고경도 특성을 가지는 소재가 스트레처블 소재에 부적합
 - 스마트폰을 비롯한 웨어러블 스마트 기기, 자동차용 디스플레이 및 디지털 사이니지 디스플레이 등의 분야에 적용 가능
- 기존의 플렉서블 디스플레이의 기판 소재는 디스플레이 표면의 유리 기판을 플라스틱 필름으로 대체하는 것만을 정의하였으나, 최근에는 플렉서블 유리(Flexible Glass)까지 개념이 확대
 - 초박판 유리에 대한 개념은 존재하였으나, 최근 폴더블 스마트폰 시장에서의 피드백을 바탕으로 그 개념이 빠르게 확산

[그림] 플렉서블 디스플레이 활용 사례

※ 출처: LG 디스플레이(좌), 삼성전자(우) 홈페이지

2. Value Chain

- 전방산업은 자동차, 디스플레이 산업, 전자기기/가전 산업 등 전자부품 전 산업으로 구성
- 후방산업은 유기물, 무기물 등 원소재 산업과, 화학 산업 그리고 반도체 공정 장비 산업으로 구성

[표] 고유연·고경도 디스플레이용 소재 분야 산업구조

후방산업	실시간 인터렉션 콘텐츠	전방산업
유기물, 유기물/무기물 복합 소재 산업 유기물/무기물/금속 분말 산업 반도체 공정 장비 산업	고유연·고경도 디스플레이용 소재	자동차 산업, 디스플레이 산업 전자기기/가전 산업

※ 출처 : 중소기업 전략기술로드맵 2021-2023(디스플레이), 중소벤처기업부, 2020

○ 고유연·고경도 디스플레이용 소재는 제품의 위치에 따라 분류

[표] 용도별 분류

전략제품	용도팀	별 분류	내용
	- 0 0	ITO 기반 소재 금속 Mesh	내재적으로 유연한 유연 전도성 소재 기술 개발
	조세	금속 나노와이어	• 고투과, 무색 및 고전도 특성구현 가능 소재 및 구조개발 • 고굴곡 시 손상되지 않는 내부
고유연·고경도		전도성 폴리머	구조설계 기술
고유한·고영도 디스플레이용 소재	고유연·고경도 디스플레이	폴리이미드 필름	 Post processing 시 손상되지 않는 내열성 확보 소재개발 고내열성, 치수안정성, 투명도 등이 우수한 투명 폴리이미드 합성 기술
	기판	초박형 유리	유무기 합성 소재를 이용한 필름 화기술 초박형 유리 소재의 성형 및 슬리밍 기술 등

※ 출처 : 3D프린팅 국내외 표준화 동향, 국가기술표준원, 2016

Ⅱ. 정책동향

1. 국내 정책동향

- 산업통상자원부(2015.12)의 「디스플레이 산업 육성전략(안)」은 중국의 급격한 추격 등에 따른 LCD 시장의 범용화에 대비하여 신시장 창출 및 고부가가치의 차세대 디스플레이인 AMOLED에 주목할 필요가 있음을 강조
 - OLED 산업의 전반적 경쟁력 제고를 위해 첫째, "OLED, 플렉시블 등 시장 선도형 R&D 및 보급화 추진, 둘째, OLED 전문 특허기업(가칭 K-OLED) 설립, 셋째, 디스플레이 산학협력 프로그램 추진, 넷째, 차세대 R&D 생태계 구축을 위한 KDRC(미래디스플레이원천기술개발 사업)의 확대 적용" 등을 핵심 정책과제로 제시
- 한편 정부는 "2015년 12월 제17회 국가과학기술심의회 운영위원회를 개최하여 '국가 산업경쟁력 강화를 위한 세계 최고수준의 기술개발 지원 방안'을 심의·확정"
 - 이 방안에서 정부는 유망한 산업기술 분야 중 OLED, 플렉서블 디스플레이를 비롯한 9대 기술을 선정하여 세계 최고수준의 기술력을 보유할 수 있도록 "민간이 투자하기 어려운 기초분야, 미래를 대비할 원천기술 분야에 선제적인 투자를 통해 민간의 R&D를 선도하고 산업체에서 요구하는 인력 양성, 테스트베드 등과 같은 인프라 구축 등에 중점을 두고 지원할 계획"

'GAP 5(후발국과의 5년 격차 유지/선진국과의 격차 5년 극복) 전략'으로 Ш 저 4차 산업혁명 시대 리더, 글로벌 No.1 지위 확립 반도체 '17년 '22년 디스 플레이 1711 '22년 장비 국산화율 20% >> 30% 70% >> 80% 목 30% >> 50% 소재 국산화율 50% >> 70% 소재 국산회율 Ħ 시스템반도체 점유율 3% >> 6% 07H >> 47H 월드챔프 장비기업 3개 >> 8개 OLED 수출 85억불 >> 255억불

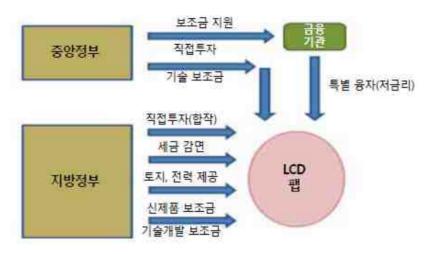
[그림] 반도체·디스플레이 산업 발전전략의 비전 및 목표

※ 출처: 반도체·디스플레이 산업 발전전략, 산업통상자원부, 2018

- 산업통상자원부(2018.2)의 「반도체·디스플레이 산업 발전전략」에 따르면 반도체와 디스플레이 산업의 상생발전을 위해 위원회를 출범시키고, 선순환적 산업생태계를 조성
 - 반도체·디스플레이 산업의 수요연계를 위해 대학의 연구개발 및 인력 양성을 지원하고, 기술유출 방지 협력 등을 추진
 - 또한 미래 시장에 대응하는 기술개발을 위해 20% 이상 신축성이 있는 플렉시블 디스플레이, 소재 사용량 60% 절감 및 공정시간을 50% 단축할 수 있는 프린팅 방식의 생산체계 등 개발을 추진
- 과학기술정보통신부와 산업통상자원부는 '제3기 국가나노기술지도('18~'27)' 에서 '편리하고 즐거운 삶'에서 미래 디스플레이 개발 목표를 발표

	나노기술로 여는 미래기술	나노기술 적용 사례	나노기술의 역할	핵심성능재표	현재수준	최종목표
	♀ 개인이 휴대할 수 있는 인간 두뇌 수준의 인공지능	저전력 인공지능 칩	저전력화, 초고속화	에너지소모량(kW) 시스템 크기(cc)	100 10 ⁵	0.02 10 ²
	🗾 내 손 안의 빅데이터	대용량 고속 메모리	저전력화, 대용량화, 초고속화	저장용량(Tb/in²) 입력속도(MB/s)	2.77 35	100
174	육 속도 무제한의 통신 환경	초고속 통신소자	서전력화, 초고속화	광통신속도(Gbps) 소모 전력(W)	2	20 0.1
편리하고	♣ 디스플레이 모양과 크기를 자유자재로	플렉시블 디스플레이	신기능 부여, 저전력화	늘어나는 정도(%) 화소수(PPI)	20 50	> 100 2,000
한	<u></u> 스마트폰으로 맛보는 음식 기행	가상 현실 소자	신기능 부여	냄새발생률(μL/μA) 화면촉감해상도(μm²)	10 100	100
	음 인간처럼 느끼는 사이보그	오감 센서	저전력화, 고감도화, 초소형화, 신기능 부여	촉감셀범위(g, mm) 후가검지능력(수, ppm)	1~10 ² , 1 10, 40	1~10 ⁵ , 0.1 350, 10
즐 거	☆☆ 충전없이 날 수 있는 드론	경량 고효율 태양전지	경량화, 고효율화	기판 질량 밀도(mg/cm²) 발전효율(W/kg)	20 250	5 500
운	☆ 걸으면서 생산하는 전기	에너지 하베스터	신기능 부여, 고효율화	마찰 발전량(mJ/s) 열전성능지수(ZT)	3	50 10
삶	☞ 옷처럼 입을 수 있는 배터리	유연 배터리	신기능 부여, 고효율화	굽힘반경(cm) 수분투과율(g/m²·day)	7 3	2 0.1
	✍️ 젊은 피부를 유지하는 기술	고기능성 화장품	신기능 부여, 고기능화	생체나이-피부나이(년) 유효 흡수율(%)	1 > 60	10 > 99
	당 화장을 자동으로 해주는 마스크 팩	피부진단기	고감도화	센서 정확도(%) 3D 프린팅 가능 소재(종)	30	> 98 > 500

[그림] 제3기 국가나노기술지도에서 '편리하고 즐거운 삶' 부문


- 산업통상자원부는 '19년 11월 표준 R&D 혁신방안 발표 및 국제표준화 성과 교류회에서 수소에너지, 디스플레이 등 혁신산업 10대 분야에서 76건의 국제표준을 제안 및 그 중 '19년 10월 IEC 총회에서 국제 표준 49건을 제안한 성과 발표
 - 10대 분야: 전기·자율차, 수소에너지, 바이오·헬스, 디스플레이, 지능형 로봇, 스마트제조, 드론·해양구조물, 스마트시티·홈, 비메모리, 스마트팜
 - IEC 총회에서 대표적으로 제안한 국제표준 건에 폴더블 디스플레이 포함
- 정부는 '19년 8월 '소재부품장비 경쟁력 강화 대책'을 통해 일본의 수출규제에 따른 유연 디스플레이 핵심 소재인 불화 폴리이미드에 대하여 공장 신설 인허가 조기 승인, 수입국 다변화 등의 조치를 실시

2. 해외 정책동향

- 미국과 일본, 유럽 등의 선진국을 중심으로 AMOLED, 양자점 소재, 플렉시블 디스플레이 등의 미래 시장 선점 및 차세대 기술 확보를 위한 경쟁이 치열하게 전개 중
 - 미국은 국방부를 중심으로 Flexible Display Center(FDC)를 Arizona State University(ASU) 연구단지 내에 설립. 2004년부터 5년간 4,370만 달러를 지원했으며, 2009년부터는 5년간 5.000만 달러를 지원
 - 미국 정부는 또한 FlexTech Alliance를 중심으로 플렉서블 디스플레이 연구개발 수행
 - 일본은 차세대 연구개발을 위해 정부차원의 R&D 지원과 관리가 이뤄지는 NEDO를 구축하여, 플렉시블 디스플레이 R&D 프로젝트를 운영 중
 - 또한 일본 정부는 글로벌 경쟁에서 살아남고 차세대 디스플레이 시장을 선점하기 위해 대규모 자금을 투입하여 중소형 패널 회사 통합 운영(JDC) 및 자회사 출범(JOLED)
 - 유럽에서는 'FlexiDis' 프로젝트를 통해 캠브리지 대학, 독일의 슈투트가르트 대학, 노키아 연구소, 필립스 연구센터, 프랑스의 톰슨 및 ST마이크로일렉트로닉스 등에서 플렉시블 디스플레이 기술 개발 중
- 미중 무역 분쟁 이후 미국의 견제로 중국 반도체 굴기가 어려워진 상황으로, 중국 정부 Tech산업 육성정책 방향이 디스플레이 산업 중심으로 회귀한 가능성이 커짐
 - (일본) 우리나라가 소재·부품·장비 중 높은 수입의존도를 보이는 반도체·디스플레이 핵심 소재에 대한 수출규제 및 백색국가 배제 정책 시행
 - (중국) 2017년 중국 정부는 자국 Display 과잉 투자를 막기 위해서 지원 정책을 축소하고 투자 규제를 강화하며 정부 산업 육성 방향도 Display→반도체로 선회하면서 2018년 중국 6세대 OLED 투자는 월 4.7만 장(vs 2017년 월 14만 장)으로 대폭 감소

- 2018년 3월 미국 정부의 중국산 수입품에 대한 관세부과와 이후 양국의 경쟁적인 보복관세 부과 등으로 갈등이 격화되었다가 2020년 1월 1단계 무역협상(미・중 경제・무역 협정문)에 합의함으로써 긴장이 다소 완화
 - 그러나 지식재산권 침해 및 강제적 기술이전, 화웨이 제재, 중국 국영기업에 대한 보조금 지급 문제 등 민감한 핵심현안들이 2단계 협상 과제로 넘어가 불확실성이 지속
 - 미·중 무역분쟁은 5G 통신장비, 반도체기술, 의료기기 제조업 등 기술패권 경쟁의 핵심분야에서 진행되고 있어 갈등이 장기화될 가능성
- 디스플레이의 경우 관세부과 품목에서 제외되어 직접적인 영향은 제한적이나 추가 관세가 이행될 경우 TV·모바일 등 중국 전방산업의 부진으로 대중 디스플레이 수출 부진이 심화될 가능성
 - 이 경우, 아직 중국 세트업체의 디스플레이 자급률이 20%대에 불과 한 중소형 OLED 패널에 대한 타격이 예상
 - 또한, 양국의 성장률 둔화에 따른 범산업적 영향, 반도체 등에 비해 무역분쟁에서 상대적으로 자유로운 디스플레이산업에 중국 정부의 지원이 더욱 집중될 가능성 등에 대한 우려 상존

- 중국의 2011~2015년 '제12차 5개년 과학기술기술발전규획'에서는 디스플레이 핵심재료 및 장비의 국산화를 추진하고, 산업 클러스터 형성 등 디스플레이 산업의 고도화를 추진
 - 자금, 세제, 관세 인상, 투자 규제 등의 정책 실시를 통해 LCD 생산 능력 세계 1위, 시장점유율 세계 3위로 성장
 - 2011년에는 기업의 투자 지원을 위해 "OLED 패널, 장비, 부품소재 분야의 기업 및 연구단체로 구성된 '중국 OLED 산업연맹'을 설립"하였으며, 이를 통해 "BOE, Tianma, TCL 등 19개 기업과 칭화대, 상하이대 등과 함께 OLED 연구개발을 위한 산학기술협력 및 협업체계 구축"
 - 2012년에는 LCD 관세를 3%에서 5%로 인상시켜 자국의 LCD 산업을 보호
 - 2014년에는 '2014~2016 신형 디스플레이 산업혁신 발전 행동계획'을 발표하면서 디스플레이 산업에 속하는 기업체들이 핵심 전략 재료를 확보할 수 있도록 연구개발을 지원
- 2016년까지 LCD 면적기준 세계 2위, 글로벌 시장점유율 20% 이상이라는 목표를 세우고 장비의 40%. 부품소재 80% 국산화를 추진
 - OLED와 관련하여서는 "OLED 패널뿐 아니라 5.5세대 이상의 OLED 증착장비, 도포기 등의 장비 개발과 대형 OLED 핵심 부자재 자급률 30% 이상의 달성을 목표"로 제시
- 중국은 글로벌 수요의 OLED 전환 등에 따라 기존 LCD 중심에서 OLED 집중 육성으로 전환하고 있으며, 이에 따라 중국의 보조금 지원도 OLED에 집중
 - 2015년 '중국제조 2025'에서는 AMOLED와 Flexible 디스플레이 개발을 목표로 제시
 - 즉, 2025년까지 100인치 급 인쇄공정 8K AMOLED, 100인치급 8K 플렉시블 AMOLED 기술 및 생산, 200인치 급 레이저 디스플레이기술 및 시장 창출 목표를 설정하고 집중 지원

[그림] 중국 정부의 디스플레이산업 지원체계

※ 출처: 서동혁(2017), p19; IHS

- 2016년 '제13차 5개년 계획'에서는 100대 프로젝트에 인공지능, 스마트기기 등과 함께 신형 디스플레이를 중점 발전 과제로 선정
 - 2019년말 중국의 중소형 OLED 양산 시설 규모는 우리나라의 70%를 넘어설 것으로 전망

[표] 중국의 대표적인 디스플레이 기술개발계획 및 산업발전정책

계획명	주요 내용
전자정보산업 구조조정·진흥계획 (2009년)	'신형 디스플레이 산업 발전의 난관 극복'을 목표로 제시하고 구체적인 구조조정 및 개발 계획*을 수립 * LCD 패널 생산라인 건설에 20조 원 규모의 기금 지원 등
12차 5개년 경제개발계획 (2010년)	디스플레이산업을 7대 신흥전략산업으로 지정하여 관련 기술개발을 적극 지원하고 국산화율 목표*를 수립 * LCD 패널: 2015년까지 수량 기준 80%, 2016년까지 면적 기준 80%
신형 디스플레이산업 발전계획 (2014~2016년)	2016년까지 3대 목표를 제시하고 역량 강화, 장비·재료 강화 등을 추진 - LCD 세계시장 점유율 20% 이상, 면적기준 출하량 세계 2위, 국산화율 제고(장비 40%, 부품·소재 80%)
중국제조 (made in China) 2025 (2015년)	10대 전략 육성산업으로 지정된 신소재 부문에 OLED 등 차세대 디스플레이 관련 부품·소재 개발 계획을 포함 - 2025년까지 100인치급 8K Curved 모니터 생산 등
디스플레이 개발계획 (2018~2020년)	패널 생산능력 확대 및 국산화율 제고 목표 수립 - 세계시장 점유율 50% 이상(LCD 60%, OLED 25%) - 국내 세트업체 수요 중 80% 이상 자급

※ 출처: 대외경제정책연구원(KIEP), KDIA

- 일본은 중국과 한국의 성장률을 감안했을 때 자국의 기술경쟁력이 낮다고 판단하여 자국기업 간 연합전선을 구축하는 등의 정책을 추진
 - 특히 중국의 경쟁력 및 빠른 발전 속도를 고려하여 대형 LCD 기술을 포기하고 대신 중소형 LCD 및 OLED에 집중하기 위해 2012년 4월 도시바, 소니, 히타치 3개 회사의 중소형 디스플레이 사업을 통합한 '재팬디스플레이(JDI)'를 출범
 - 2015년 1월 JDI는 소니와 파나소닉과 협력해 OLED 패널 전문업체 JOLED를 설립
 - JOLED는 일본산업혁신기구로부터 7,630억 원을 지원받아 2017년 12월에는 잉크젯 프린팅 방식의 대형 OLED 생사에 성공하였으며, 이처럼 일본은 디스플레이 산업의 생존을 위해 정부 주도의 구조조정 및 지분 투자를 통하여 JDI, JOLED를 설립
- NEDO 프로젝트 및 '최첨단연구지원프로그램 FIRST'를 통하여 저소비전력 AMOLED, OLED TADF 재료, 인쇄재료, 플렉시블 OLED 원천 기술을 확보
- 일본 경제산업성은 2011년부터 인쇄전자 소자/장비 분야는 JAPERA 프로젝트(5,000억 원/5년 투자 완료 및 2단계 사업 시작), 소재는 CEREBA(Chemical materials Evaluation and REsearch BAse)를 통해서 집중 지원
 - 이처럼 일본은 M&A 등을 통해 기업 경쟁력을 강화하고 소재 및 장비/공정에 대한 전방위 기술력 강화 정책을 추진
- 일본 정부는 2019년 7월 한국으로 수출되는 반도체·디스플레이 관련 주요 3개 소재(EUV(극자외선)용 포토레지스트, 에칭가스(고순도 불화수소), 플루오린 폴리이미드)를 포괄적 수출허가 대상에서 개별심사(최대 90일 소요) 대상으로 전환하는 등의 수출 규제를 발표
 - 디스플레이 생산에 사용되는 규제 품목은 플루오린 폴리이미드로, 재고물량 투입, 수출허가 등으로 생산 차질은 없는 것으로 보임

Ⅲ. 기술동향

1. 기술범위 및 특징

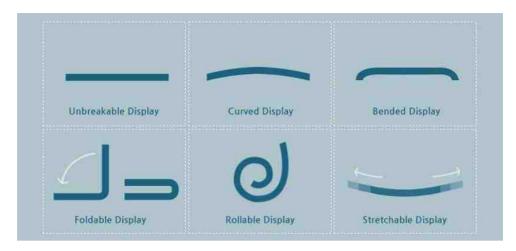
- 고유연·고경도 디스플레이용 소재의 구성요소를 기준으로 볼 때 기판부, 구동부, 표시부 3가지로 분류
 - 고유연·고경도 디스플레이를 구현하기 위해서는 기판부 소재의 선택이 가장 중요

[표] 고유연·고경도 디스플레이용 소재의 기술 분류

분류	구분	예시
	플라스틱 기판 폴리이미드로 대표되는 유연 기판으로, PEN, PET, PS 등 여러 제품 후보군이 있지만, 최근 CPI(투명 폴리이미드 기술)가 상용화	a "Coordination Bend" Evaporated Ap Ag Islands (w/o PT)
기판부	초박형 유리기판 초박형 유리기판은 플라스틱, 금속, 실리콘 등의 다른 기판 재료 대비 광학 특성, 기계적 저항성, 내화학성, 열 안정성 등이 매우 뛰어난 이점	
	 금속호일기판 다양한 응용을 위해서는 저가의 유연한 기판으로, 기존의 폴리이미드, 초박형 유리 기판을 사용하기 힘든 저가형 모델에 적용 가능 	
	Organic TFT(유기물 기반) Oxide TFT의 한계를 극복하기 위해 개발 되고 있지만, 현재 유연성, 이동도, 수분 안정성 등 해결해야 하는 기술 장벽이 존재함	a Strain b Ptype Pype Pype Pype Pype Pype Pype Pype P
구동부	 a-Si TFT 혹은 산화물계 TFT a-Si TFT를 대체하기 위해 IGZO 기반의 TFT가 2000년대 초에 개발되었으며, 현재는 IGZO TFT가 상용화 다만, 고유연 소재 등에 적용하기 위해서는 추가적인 기술개발이 필요한 상태임 	(a) SD: Tikal (b) 10 ³ (TD = 10.1V) 10 ³ (Active layer: In,O.) 10 ³ (TD = 10.1V) 10 ⁴
표시부	OLEDQD-LEDLCD, E-paper 등 기타 표시 장치	

※ 출처 : 중소기업 기술국산화 전략품목 상세분석(디스플레이), 중소벤처기업부, 2020

2. 국내/외 기술 Trend


- 폴더블 디스플레이 주요 소재로는 CPI(투명폴리이미드)와 베이스필름 등
 - CPI는 유리처럼 투명하고 강도가 세면서도 수십만 번 접어도 흠집이 나지 않는다는 장점으로 OLED의 커버유리를 대체하지만 단점은 긁히는 것에 대한 내성이 약하다는 점으로 이를 얼마나 보완하느냐가 기술 개발의 핵심
 - 베이스 필름으로는 커브드 OLED 디스플레이에 사용되는 PET 필름이 PI 필름으로 대체될 것
 - PI소재 커버 윈도우(cover window)와 박막 유리를 혼합·적층하는 방식도 고려 중

[그림] 플렉서블 OLED 패널의 구조

※ 출처 : 폴더블 핵심기술은 디스플레이(이데일리, 2019.10.08.)

○ Curved, Bended Display등은 고정형 디스플레이 기술로 기존의 평면 디스플레이에서 약간의 기술적 진일보로 구현이 가능하였지만, Foldable, Rollable, Stretchable 등 지속적인 변형을 가하는 디스플레이의 기술 난이도는 급격히 상승

[그림] 플렉서블 디스플레이의 종류

※ 출처 : 삼성디스플레이 뉴스룸

- 현재 폴더블/플렉서블 디스플레이 핵심 기술 및 소재는 초박판 유리와 투명 폴리이미드(Colorless Polyimide, CPI) 기술이 양분
- 폴리이미드 기판은 이미드 관능기가 반복되어 연결되어 있는 고분자 소재로서, 고내열성을 특징으로 하는 엔지니어링 플라스틱 특유의 강성과 내열성 때문에 각종 첨단 산업분야에 적극적으로 활용
 - 전자기기용 회로 기판(FPCB)의 절연체로 적극적으로 활용되어왔으며, 최근 플렉시블 디스플레이 핵심 기판소재로 폴리이미드가 차용되어 활용
 - 분말 성형을 통한 금속대체용 고성능 고분자 소재로서의 분야 또한 확장하는 상황이기 때문에, 첨단 반도체 및 디스플레이, 전기전자 산업에 직접적으로 연계되어있는 핵심 화학 소재
- 유·뮤기 복합소재를 이용한 기능성 디스플레이용 소재는 유기물의 유연성과 무기물의 경도 등 각각의 소재가 원래의 성질을 유지하면서 단독의 재료로 얻을 수 없는 특성을 보유할 수 있게 개발한 소재
- CPI 필름은 폴더블폰을 접었을 때 화면 중앙 부분에 주름이 생기고 시인성이 유리에 못 미치는 것이 약점이며 이를 개선하기 위해 표면 경도를 개선한 초박막 유리(Ultra Thin Glass, UTG)가 급부상
 - 커버윈도 소재로 부상한 UTG 최대 장점은 표면 경도와 시인성이며,

유리 특성상 표면이 단단하고 깔끔한 심미성을 제공하여, 특히 폴더블 스마트폰에 적용하였을 때 높은 터치감을 제공

- UTG는 유리를 아주 얇게 만드는 박막 공정과 특수한 유리 강화 공정을 거쳐 유연성을 확보
- (삼성전자) 삼성전자는 도우인시스와 함께 폴더블용 초박막 강화유리 (Ultra Thin Glass, UTG)를 개발하면서 폴더블폰 초기 시장을 선점하고자 하며 연구개발을 목적으로 사실상 도우인시스 인수
 - 삼성디스플레이는 완전한 UTG 기술 확보를 통해 고객사의 요구에 따라 CPI 디스플레이와 UTG 디스플레이 모두 공급이 가능
 - 삼성전자는 2019년 출시한 첫 폴더블폰인 갤럭시 폴드에는 일본 스미토모화학의 투명 폴리이미드 필름(CPI)을 사용했으나, 갤럭시 폴드 2부터는 필름 대신 초박형 유리 디스플레이를 적용할 방침임
 - 국내 업체에서 소재를 공급받게 되면서 일본에 대한 폴리이미드의 수입 의존도가 낮아질 것으로 기대됨

[그림] 삼성전자의 갤럭시 폴드 및 새로운 폼팩터의 스마트폰

※ 출처 : 도우인시스 홈페이지(2019)

- (코오롱인더스트리) 코오롱인더스트리가 10년 연구 끝에 2016년 세계 최초로 투명 폴리이미드 개발에 성공함
 - 2018년 1분기에 세계 최초로 투명 폴리이미드의 양산체계를 완성하여 초기 시장 선점이 가능한 유일한 기업임
 - 전방 수요 증가에 따른 CPI 채택률 증가에 따라 수익 확보 예상됨

- 경쟁사와의 기술격차 및 특허권 격차는 최대 7년으로 앞서 있어 코오롱인더스트리의 입지 선점
- 투명 폴리이미드 필름(CPI)에 생체인식 솔루션인 DFS를 접목하는 플렉서블 디스플레이 생체인식 솔루션 개발을 크루셜텍과 진행 중에 있으며 CPI 시장 선점을 위해 양산체제까지 확보
- 폴더블폰을 출시하거나 출시 예정인 로욜, 화웨이, 샤오미, 모토로라 등에 폴리이미드를 납품하고 있으며, 국내에서는 일본 수출규제로 인해 CPI 소재 분야에서 선두 회사로 등장
- SKC와 같은 지분 비율로 합작한 SKC코오롱PI 합작회사는 2018년 초 기준으로 전 세계 폴리이미드 필름 시장점유율 1위를 달성하였음

[그림] 코오롱인더스트리의 CPI 필름

※ 출처 : 코오롱인터스트리 홈페이지(2019)

- (SK이노베이션) SK이노베이션은 투명 폴리이미드 필름 사업을 본격화함
 - 투명 PI필름 개발과 함께 특수 하드코팅 기술, 지문 오염방지 등을 위한 기능성 코팅 기술도 개발
 - 플렉서블 디스플레이 핵심 소재 'FCW(Flexible Cover Window)'를 개발했다고 밝힘
 - 이로써 코오롱인더스트리, SKC, 스미토모화학, LG화학이 뛰어든 투명 PI 필름 시장이 5파전으로 치닫게 됨
- (덕산테코피아) 투명 PI 밸류체인의 하단에 속하는 초기 모노머를 합성할

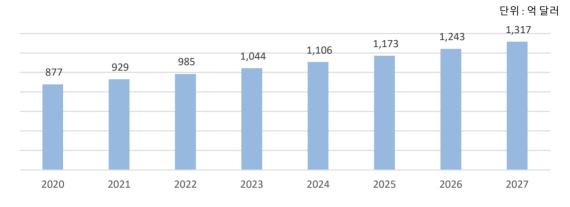

수 있는 기술력 보유하고 있으며, 시제품에 대한 고객 평가가 완료된 상태

- 기업공개(IPO)로 조달한 자금은 양산에 들어가는 투명폴리이미드 관련 공장을 신축하는데 사용하고 있고, 일본정부의 수출규제에 따른 소재 국산화 여론이 성장하는데 도움을 주고 있는 것으로 분석
- (아이티켐) 아이티켐은 일본의 수출규제 품목을 국산화하는 데 성공한 강소기업 중 하나임
 - 투명 PI를 조성하는 모노머 소재를 자체 개발하는데 성공하고 국내와 일본 기업으로부터 양산 승인을 받으면서 국산화와 양산 적용까지 성공
 - 2019년 6월 접거나 구부려도 자국이 생기지 않는 필름인 투명 폴리이미드(CPI) 필름의 핵심 원료 두 종(6-FDA·TFMB)을 처음 국산화했음
- (이솔화학) 9H 경도에 1~1.5R의 폴딩성을 띤 캐스팅 필름 ES글라스 개발하여 기존의 ES글라스 생산 라인을 활용해 별도의 추가 설비 투자 없이 양산할 계획

IV. 시장동향

1. 글로벌 시장

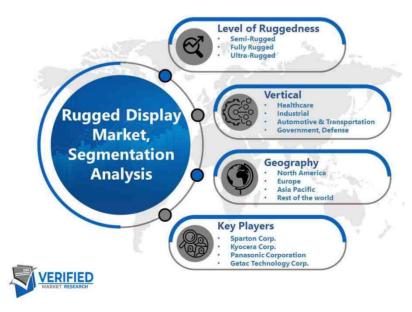
- 세계 디스플레이 시장은 주요 어플리케이션인 TV·스마트폰의 대면적화로 면적은 꾸준히 성장하고 있으나, 세계 경기둔화와 중국 發 LCD 공급과잉 등에 따른 패널가격 하락으로 금액 기준 시장규모 전망치를 대폭 하향 조정
- (면적기준) '18년 세계 디스플레이 출하 면적은 2억 1,460만㎡로 전년 대비 7.0% 증가하였으며, '18~'21년 연평균 4.0% 성장이 예상되며, OLED 비중은 3.1%에서 6.3%까지 증가 예상
 - ('18~'21년 면적 연평균 성장률 예상) 전체 4.0% / LCD 2.9% / OLED 31.4%



[그림] 디스플레이 시장 전망(면적기준 / 단위 : 10만m²)

※ 출처: IHS. KDIA(한국디스플레이산업협회)

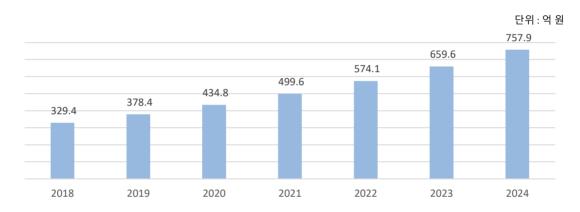
- 러기드 디스플레이 시장은 2019년 85억 5천만 달러로 2027년까지 1,317억 달러에 이를 것으로 예상되며, 2020년부터 2027년까지 5.98%의 CAGR로 성장할 것으로 예상
 - 러기드 디스플레이 시장의 성장은 디스플레이 기술의 발전과 높은 사양을 가진 견고한 디스플레이 장치의 개발, 구매비용과 자산 소유기간 동안의 운영비용을 모두 합친 총 소유 비용(Total Cost of Ownership, TCO)의 감소, 다양한 산업에서 HMI(human-machine interface) 및 IoT에 대한 수요 증가에 의해 추진


- 전 세계적으로 여러 디스플레이 제조업체가 고객 경험을 향상시키기 위해 산업 부문에서 러기드 디스플레이를 채택하여 생산을 확장하는데 주력하고 있음
- 다른 한편으로는, 러기드 디스플레이에 적용되는 원료 비용과 러기드 디스플레이 장치에 필요한 높은 초기 비용 상승은 향후 이 제품 시장의 성장을 억제

[그림] 러기드 디스플레이 시장 전망

※ 출처: www.verifiedmarketresearch.com

○ 디스플레이 시장은 견고성, 디스플레이 크기, 운영 체제, 수직 및 지리 수준에 따라 세분화



[그림] 러기드 디스플레이 시장의 세분화

※ 출처: www.verifiedmarketresearch.com

2. 국내 시장

- 고유연·고경도 디스플레이용 소재의 국내 시장은 '19년 329억 4천만 원 규모에서 연평균 14.9%의 성장률로 성장하여 '24년 757억 9천만 원으로 성장할 것으로 전망됨
 - 전체 디스플레이 시장에서 IHS의 발표에 따르면, 국내 점유율은 45.8% 수준이며 중소형 OLED 디스플레이의 경우 삼성전자가 90% 이상의 시장을 과점하고 있음
 - 국내 기술 수준 및 상용화 수준이 세계 최고 수준으로 평가

[그림] 고유연 고경도 디스플레이용 소재 국내 시장규모 및 전망

※ 출처: MarketsandMarkets(2019.06) 재가공


○ 우리나라는 2004년 이후 세계시장 1위를 유지하고 있으나 2012년을 기점으로 점유 비중이 하락 전환한 반면, 2위 중국은 2010년 이후 빠르게 점유율을 확대하면서 2020년에는 그 격차가 1%p로 좁혀진 상황

[표] 국가별 디스플레이시장 점유율(금액 기준, %)

국가	2012	2013	2014	2015	2016	2017	2018	2019	2020E
한국	48.4	44.7	42.8	45.2	45.8	44.4	42.6	40.1	37.3
중국	8.7	10.5	12.5	14.1	17.6	21	25	31	36.3
대만	26.9	28.1	28.8	24.6	21.3	26.2	24.4	22	21.4
일본	15.4	15.5	15	15.4	14.3	7.5	6.7	6	4.3
기타	0.6	1.2	0.9	0.6	0.9	0.9	1.2	1	0.6

※ 출처: Omdia, 한국디스플레이산업협회('20.Q3)

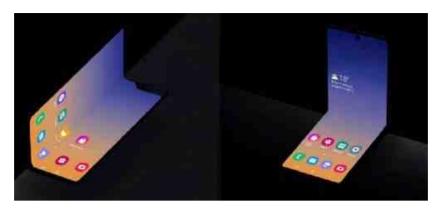
- (LCD) 2018년 세계 LCD 시장에서 중국이 30.6%의 점유율을 차지하면서 한국(29.2%)을 추월하였으며, 한국은 전략적으로 LCD 사업을 축소 중
- (OLED) 한국이 대형 및 중소형 OLED 패널 시장에서 독보적 1위를 유지하고 있으나, 2018년 이후 중국의 OLED 생산 확대에 따른 점유율 상승 추세

[그림] 국가별 LCD(좌)와 OLED(우) 시장점유율(금액기준)

※ 출처 : Omdia, 한국디스플레이산업협회('20.Q3)

- 우리나라의 2020년 디스플레이 수출은 LCD 생산라인 축소, 코로나19 확산으로 인한 전방산업의 글로벌 수요위축 등으로 LCD 패널을 중심으로 감소
 - OLED 패널은 3년연속 수출 100억달러를 달성하면서 디스플레이 전체 수출에서 차지하는 비중이 60%를 초과하는 등 세계시장 점유율 1위 유지

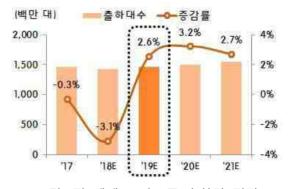
[표] 디스플레이 품목별 수출실적


품목	2012	2013	2014	2015	2016	2017	2018	2019	2020
디스플레이	369	359	324	297	251	274	247	205	180
니—ㄹ네이	(10)	(-2.7)	(-9.8)	(-8.3)	(-15.5)	(9)	(-9.9)	(-17.0)	(-12.3)
LCD	323	307	281	242	183	181	144	102	71
LCD	(4)	(-5.2)	(-8.3)	(-13.9)	(-24.6)	(-1.1)	(-20.3)	(-28.8)	(-30.9)
OLED	46	53	43	55	69	93	103	103	109
OLED	(86)	(15)	(-18.2)	(29)	(24)	(36)	(10)	(-0.5)	(6)

※ 출처: 한국무역통계진흥원

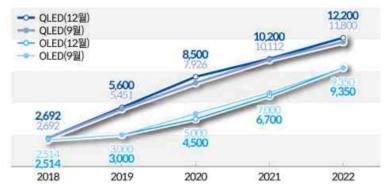
V. 산업동향

1. 글로벌 산업동향


- 현재 전 세계 투명 디스플레이용 전극 소재는 일본의 닛토덴코(Nitto Denko)사의 ITO 필름이 전체 시장의 90% 이상을 차지
 - 닛토덴코의 ITO 가격정책이 유연소재 등 차세대 투명전도성 기판의 산업의 확장성 속도를 조절
 - 현재 유연소재의 투명전극 소재 기술 또한 닛토덴코가 앞서 있는 상황으로 비정질 ITO 소재를 개발하여 기존에 비해 개선된 유연성을 나타내는 ITO 필름 출시
- 유연 투명 전도성 필름 산업은 투명전극을 구성하는 핵심 물질인 전도성 소재(금속 소재, 탄소 소재, 전도성 고분자 소재 등) 제조사와 전도성 소재를 지지하기 위한 필름 제조 및 코팅/인쇄 산업이 후방산업으로 구성
- 폴리이미드 소재 산업은 단량체 합성, 정제, 중간체 합성 분야인 화학 산업으로부터 바니시를 공급받아 공정 산업을 통해 필름, 분체 및 투명 PI 기판을 제작하는 산업 구조 형성
 - 기존의 폴리이미드 소재는 기존의 폴리머에 비해 우수한 내화학성, 내열성 등으로 인하여 내연필름, 강판성 수지, 층간 절연체, IC 봉지재 등으로 전방산업을 보유
 - 폼팩터란 하드웨어의 특징적인 형태를 일컫는 말로, 기존의 고정형 폼팩터(평면 디스플레이)에서, 삼성전자의 '19년 Galaxy Fold의 출시 이후 새로운 폼팩터인 폴더블/ 플렉서블 폼팩터 산업이 본격적으로 개막
 - 미국의 디스플레이 전문 시장조사업체인 '디스플레이 서플라이 체인 컨설턴츠(DSCC)'는 최근 보고서에서 오는 2023년 전 세계 폴더블 패널 출하 대수가 6천 880만대에 달할 것으로 추산
 - 스마트폰 분야에서 삼성전자가 폼팩터의 변화를 주도하고 있으며, '23년까지 폴더블 디스플레이 시장에서 70% 이상의 높은 점유율을 유지할 것으로 전망

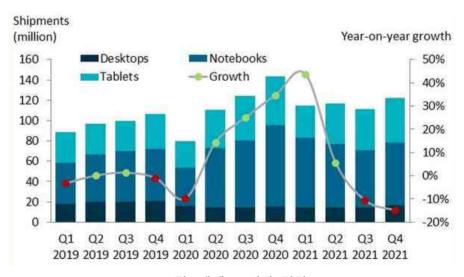
[그림] 삼성전자의 갤럭시 폴드 및 새로운 폼팩터의 스마트폰

※ 출처: 삼성전자 뉴스룸


- 중국의 샤오미 및 모토로라 등에서도 유연 기판의 상용화가 적용된 폴더블 스마트폰을 잇따라 출시하면서 본격적인 산업 생태계가 태동
- 디스플레이 산업 수요의 큰 축을 담당하고 있는 스마트폰・TV・PC 등 주요 소비자전자제품(CE)의 수요 증가가 둔화되어 디스플레이 패널 양적 성장의 제약요인으로 작용
- (스마트폰) 시장조사기관 IDC에 따르면 2021년 글로벌 스마트폰 출하량은 13억 8,000만대로 전년 대비 7.7% 성장할 것으로 예상
 - 2019년과 2020년 하향세였던 스마트폰 시장이 2년 만에 반등세로 전환할 것이라는 예상으로, 성장세가 2022년까지 이어져 출하량이 14억 3,000만대까지 확대될 것이라고 전망
 - 스마트폰 시장의 반등은 코로나19 여파 해소와 5G폰 교체 수요 증가, 중국·인도 등 신흥 시장 성장 등의 영향인 것으로 분석

[그림] 전 세계 스마트폰 출하량 전망

※ 출처 : IDC. IITP 재인용


- (TV) 글로벌 시장조사업체 IHS마킷은 '글로벌 TV시장 전망 보고서'에서 QLED TV와 OLED TV가 LCD 패널과 OLED 패널의 가격차이 때문에 오는 2022년까지 전 세계 판매 대수가 점점 더 벌어질 것으로 전망하였음
 - 예상보다 QLED TV 판매대수가 늘어날 것으로 전망하는 이유는 LCD 패널 가격이 예상보다 더 하락했기 때문으로, LCD 패널에 QD시트를 추가한 QLED TV가 LCD 패널 가격 하락으로 공격적인 가격정책을 취하면서 판매량이 당초 예상보다 늘어난 것

[그림] 세계 TV 시장 전망(단위 : 천 대)

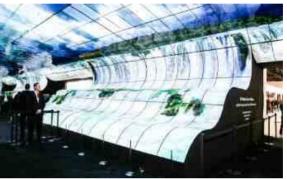
※ 출처 : IHS 마킷. 뉴스핌 재인용

○ (PC) 세계 PC 시장은 CPU, RAM 등 성능 개선 속도 둔화로 인한 교체주기 연장, 인텔의 CPU 생산 차질, 스마트폰의 성능 향상으로 인한 대체효과, 중국 수요 감소 등으로 장기 침체를 겪는 중

[그림] 세계 PC시장 전망

※ 출처 : 카날리스. CIO 재인용

- 전방산업의 수요부진에 대한 세트 및 패널 제조업체들의 전통적인 대응 방안은 기술력 우위를 바탕으로 한 ① 디스플레이 크기의 확대 ② 제품 두께 감소 ③ 4K・8K 등 고화질 제품(TV) 출시 등의 프리미엄化 전략임
- (TV) 2019년 CES에서 삼성전자는 98" 8K QLED TV, 219" 6K Micro LED TV, LG전자는 88" 8K OLED TV를 공개하는 등 지속적인 화질· 크기 경쟁을 통해 기술력 홍보와 프리미엄 시장 공략 의지를 보임
 - Consumer Electronics Show. 1967년 뉴욕에서 시작하여 현재는 매년 1월 라스베가스에서 개최되는 세계 최대 가전 전시회로 IT산업의 全분야를 망라한 최신 트렌드를 살펴볼 수 있음
 - Changhong, Konka, Skyworth 등 중화권 업체들도 OLED TV를 전시 하였으나 아직은 韓・日 업체와는 기술격차가 존재한다는 견해 有



[그림] 삼성전자 98" 8K QLED TV(좌), LG전자 88" 8K OLED TV(우)

- (스마트폰) 큰 폭의 디자인 변화보다는 베젤리스 디자인 적용과 화면비율 확대 등 디스플레이 면적을 넓히는 방식의 진화가 이루어져 옴
 - 최근에는 노치(notch) 디자인, 홀(hole) 디스플레이 등 상·하단 바를 최소화하고 디스플레이 비율을 극대화하려는 시도가 경쟁적으로 이루어지고 있음
- TV・스마트폰 등에서 화면의 대형화는 계속 진행되어왔으나, 기기의 형태(Form Factor) 측면에서는 Curved, Edge 등의 시도에도 불구하고 커다란 변화가 없었음

- Apple社의 노치(notch) 디자인을 적용한 'iPhone X' 출시 이후 단점에 대한 논란에도 불구하고 노치 디자인 열풍이 불었는데, 이는 제품형태 변화와 새로움에 대한 소비자들의 열망이 표출된 현상으로 해석 가능
- (롤러블 TV 등장) LG전자는 2019년 CES에서 65" 4K 롤러블 TV (시그니처 OLED TV R)를 공개하여 'Best TV Product상' 등 각종 매체에서 50여 개 상을 수상하는 등 전시회장에서 가장 많은 주목을 받음

[그림] LG전자 OLED TV R(좌), LG전자 OLED 폭포(우)

- Full view, Line view, Zero View의 3가지 형태로 변형이 가능하며 각각 TV, 시계·조명·뮤직플레이어, 사운드바 등으로 사용이 가능하며, 다소 크기가 큰 사운드바 형태에 화면이 말려서 들어가는 모습을 보임
- 화질·색감 등에서 우수한 성능을 보이고 화면을 꺼내고 집어넣는 과정에서 부드러운 움직임을 보이는 등 완성도 있는 모습을 보였으며, 하단 스피커의 부피가 생각보다 커서 곡률반경(반지름) 측면에서는 추가적인 개선이 요구됨
- '19년 내 시장 출시가 목표이지만, 가격이 약 5천만원~1억원 수준으로 예상되어 출시 초기에는 초프리미엄 시장이 제한적으로 형성될 전망
- LG전자는 롤러블 TV뿐만 아니라 전시장 입구에 OLED 폭포를 전시하여 폼팩터 혁신에 적합한 Flexible OLED의 특장점 및 기술력을 적극 홍보

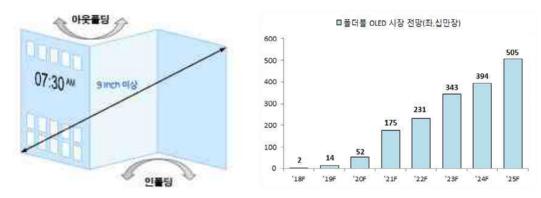
○ (폴더블폰 경쟁) 中 Royole社의 CES 2019에서의 폴더블폰(FlexFai) 공개, 삼성전자와 Huawei, Xiaomi 등의 폴더블폰 영상 공개 등 스마트폰 시장에서는 '19년부터 폴더블폰 경쟁이 개시될 전망

[그림] Royole社의 폴더블폰 'FlexFai'(좌), 삼성전자 첫폴더블폰 '갤럭시 폴드'(우)

- 中 Royole社가 공개한 FlexFai는 상대적으로 난이도가 낮은 아웃폴딩 (바깥으로 접힘)방식의 자체제작 디스플레이를 사용하였으나, 힌지 부문의 내구성이나 표면처리, 두께 등의 측면을 보면 실용적이라고 하기 어려움
- 삼성전자는 안으로 접히는 인폴딩 방식의 폴더블폰 '갤럭시 폴드'를 공개, '19년 4월 출시(U\$1,980)할 예정이며, 안쪽 디스플레이는 7.3인치 크기의 인피니티 플렉스 디스플레이를 탑재했으며 외면에 4.6인치 커버디스플레이 추가 장착

[그림] Huawei 폴더블폰 특허(좌), Xiaomi 폴더블폰 컨셉사진(우)

- CES 2021에서는 롤러블 디스플레이가 적용된 스마트폰과 전면 카메라가 보이지 않는 디스플레이가 등장
 - LG전자와 TCL이 올해 출시할 것으로 예상되는 롤러블 스마트폰에는 각각 중국의 BOE와 CSOT가 생산한 롤러블 OLED 패널이 적용
 - 17인치까지 화면을 펼칠 수 있는 '프린티드 OLED 스크롤링 디스플레이 (Printed OLED Scrolling Display)'를 공개하면서 CSOT의 잉크젯 프린팅 공정기술을 앞세워 경쟁사 대비 낮은 가격으로 OLED 패널을 생산하겠다는 계획



[그림] CSOT의 17인치 프린티드 OLED 스크롤링 디스플레이

※ 출처 : ZDnet Korea

- 국내 전자·부품 업계가 UDC 도입에 대해 미온적인 상황에서 대만 이노룩스(INNOLUX)는 전면 카메라가 보이지 않는 LCD 기술을 공개
 - 이노룩스가 선보인 LCD 패널은 전면 카메라가 위치한 부분의 및 투과율을 400%가량 높인 것이 특징으로 크기는 6.4인치에 달하며, 상·하·좌·우 화면을 100% 꽉 채운 제로베젤 디자인도 구현
- LG디스플레이는 CES 2021에서 화질 완성도를 높인 차세대 OLED TV 패널을 공개하였음
 - CES 2021에서 공개한 LG의 77인치 차세대 OLED TV 패널은 OLED 화질의 핵심인 유기발광 소자를 새롭게 개발해 화질이 비약적 향상

- 폼팩터 혁신이 전시장에서의 놀라움에 그치지 않고 시장에서 성공하기 위해서는 사용자 경험 측면에서 기존 제품들과 차별화된 경험을 제공하되 안정적인 성능을 유지해야 함
 - 기본적으로 우려되는 부분은 디스플레이 표면과 힌지 부분의 내구성 문제로, 반복적인 사용 후에도 화질·기능 저하가 없어야 하며, 이를 위해서는 관련기술 개발과 함께 CPI필름 등 양질의 핵심소재 확보도 필수적
 - 새로운 형태에 걸맞는 UI(User Interface) 제공이 중요하며, 폴더블폰 대화면의 장점을 살리기 위해서는 화면비 문제에 대한 해결책을 제시할 필요가 있음
 - 화면비 문제 해결과 대면적 확보를 통한 노트북, 태블릿 수요 대체를 위해 기술 발전과 함께 향후 투폴딩 방식의 폴더블폰도 등장할 것으로 기대

[그림] 차세대 폴더블폰 예상도(좌), 폴더블 OLED 시장 전망(우)

※ 출처 : 메리츠종금증권

- 소비자 전자제품 폼팩터 혁신의 중심에는 Flexible OLED로 구현하는 유연한 디스플레이가 있으며, 완제품의 성공적인 시장 침투 여부가 국내・외 디스플레이 업체 실적에 큰 변수로 작용할 전망
 - Flexible OLED는 당분간 가격보다는 성능을 중시하는 프리미엄 제품 위주로 탑재될 전망이므로, 고부가가치 창출을 위해서는 차별화된 기술력을 바탕으로 시장을 선도하는 것이 중요

2. 국내 산업동향

- 국내 디스플레이 생산액은 2016년 68.2조 원에서 2017년 79.2조 원으로 크게 증가하였으나 2018년 72.6조 원으로 다소 감소
 - 디스플레이 시장 점유율 및 수출액이 최근 지속 감소하면서 국내 디스플레이 산업 경쟁력에 위기

구분	2016	2017	2018	2019	2020
디스플레이 생산(조원)	68.20	79.20	72.60	-	-
디스플레이시장 점유율(%)	45.8	45.0	42.6	40.1	37.3
디스플레이 수출(억불)	251.1	274.0	247.0	205.0	180.0
디스플레이 수출 증가율(%)	-15.5	9.1	-9.9	-17.0	-12.2
17인치모니터 가격(\$)	43.4	40.0	38.3	36.1	35.5
32인치TV 가격(\$)	64.4	71.0	52.4	37.0	47.2

[표] 디스플레이 산업 동향

※ 출처 : e-나라지표

- 전체 디스플레이 수출액은 감소세에 있지만, OLED 수출은 2020년 109억 달러로 역대 최대 실적을 기록
 - 이는 국내 기업들이 폴더블폰, OLED TV 등 프리미엄 제품을 늘리고 LCD에서 OLED로의 사업 전환을 통해 차세대 디스플레이 시장에 선제적으로 대응한 결과로 분석됨
 - OLED는 최근 한국의 수출 효자 품목으로 자리 잡아 제2반도체로 자리잡고 있음

※ 출처 : 조선비즈(biz.chosun.com)

- 2020년 디스플레이 수출은 LCD 생산라인 축소, 코로나19 확산으로 인한 전방산업의 글로벌 수요위축 등으로 LCD 패널을 중심으로 감소
 - 2020년 LCD 패널 수출은 하반기 패널 가격 상승, IT 패널 수요의 증가에도 불구하고 국내기업들이 OLED로 사업을 전환하는 과정에서 생산이 크게 줄어 전년대비 30.9% 감소한 70.8억달러를 기록
 - 반면, OLED 패널은 전년대비 6.4% 증가한 109.1억달러로 역대 최대 수출을 달성하면서 디스플레이 전체 수출에서 차지하는 비중도 60%를 초과하는 등 세계시장 점유율 1위를 유지
 - 이는 OLED 패널 수출 실적이 2019년 LCD 패널을 추월하여 골든 크로스를 달성한 이후 폴더블폰, OLED TV 등 프리미엄 제품을 확대하고, 차세대 디스플레이 시장에 선제적으로 대응한 결과

러
Ē

품목	2012	2013	2014	2015	2016	2017	2018	2019	2020
디스플레이	369	359.1	324	297.2	251.1	273.8	246.8	204.9	179.8
니ㅡㄹ네이	-10.2	(-2.7)	(-9.8)	(-8.3)	(-15.5)	-9	(-9.9)	(-17.0)	(-12.3)
LCD	323.2	306.5	281	241.9	182.5	180.5	143.8	102.4	70.8
LCD	-4.2	(-5.2)	(-8.3)	(-13.9)	(-24.6)	(-1.1)	(-20.3)	(-28.8)	(-30.9)
OLED	45.9	52.6	43	55.3	68.6	93.3	103	102.5	109.1
OLED	-85.7	-14.8	(-18.2)	-28.5	-24.1	-36	-10.4	(-0.5)	-6.4

※ 출처 : 한국무역통계진흥원

- 코로나19 발생 초기에는 BOE, CSOT, Tianma 등 중국의 첨단 디스플레이 팹들이 위치한 우한의 비상 상황으로 인해 국내 디스플레이 업체들의 반사 수혜를 기대
 - 중국 신규 디스플레이 생산라인 램프업 지연, 모듈 제조라인 가동 중단, 물류 차질 등으로 중국 내 패널 생산이 감소할 것으로 예상
- 그러나 코로나19가 빠르게 안정된 중국은 생산 차질이 크지 않았던 반면, 오히려 유럽과 미국 등으로 급속히 확산되면서 2020년 상반기 중 TV를 중심으로 글로벌 전방산업 수요가 크게 위축

○ 삼성디스플레이와 LG디스플레이 양사는 '17년 호실적을 기록했던 반면, '18년 이후 실적은 전방산업 수요 부진 및 중국 發 공급과잉에 따른 패널 가격 하락 등으로 다소 주춤한 모습을 보임

[표] 국내 디스플레이 패널 제조업체 영업 현황(단위 : 십억 원, %)

	구분	2017	2018	2019	2020
	매출액	34,293	32,316	30,958	30,475
삼성 디스플레이	영업이익	5,268	2,522	1,467	2,144
1— = 1	영업이익률	15.36%	7.80%	4.74%	7.04%
	매출액	27,790	24,337	23,476	24,230
LG 디스플레이	영업이익	2,462	93	-1,359	-29
-1 — E -11 *1	영업이익률	8.86%	0.38%	-5.79%	-0.12%

- ※ 출처: 디스플레이산업 기술·시장동향, 한국무역보험공사, 2019
 - (삼성디스플레이) LCD 패널 가격 하락과 수요 부진 등을 사유로 2020년 매출액은 30.5조원으로 전년 대비 소폭 감소하였으나 영업이익률은 7.04%로 소폭 증가하였음
 - Rigid OLED의 중국산 LCD패널과의 경합, 아이폰의 고가정책으로 인한 판매부진 등
 - OLED 패널이 매출액의 약 70%대 중후반을 차지하고 있으며, 하반기 Flexible OLED 수요가 증가하여 상대적으로 양호한 실적 유지
 - (LG디스플레이) LCD 패널 매출비율이 80% 수준으로 LCD패널 가격 하락 영향을 크게 받았으며, OLED로의 전환 투자에 따른 감가상각비 증가 등으로 2019년부터 매출 감소와 영업손실을 기록 중
 - LG디스플레이 OLED 매출비율 목표 : ('17) 10%대→ ('18) 20%→ ('19) 30%→ ('21) 50%
 - '18년 영업이익 적자가 우려되었으나, ①파주E5라인(6세대 Flexible OLED)의 수율 개선 ② Apple社로부터 양산승인이 늦어짐에 따른 파주E6라인(아이폰용 OLED)의 가동지연으로 인한 감가상각비 미반영 등으로 영업흑자 유지

- (창성시트) 두께 1.5mm 크기의 필름형 투명 LED 디스플레이를 제조하여 키오스크용 및 차량 내부용 디지털 사이니지 시장을 공략
 - 필름형 투명 LED 디스플레이에 장착하는 LED를 미니 LED(0.2mm)까지 적용하는 임베디드형 구동칩 기술을 상용화하고 제품의 투명도와 해상도를 극대화하는 등 기술과 제품 경쟁력으로 시장지배력 우위를 도모함
 - 롤투롤 등 혁신적인 공정 기술 개선을 통해 생산원가를 파격적으로 절감, 글로벌 디지털 사이니지 시장에서 가격 경쟁력을 확보
 - 창성시트는 다양한 기재에 적용할 수 있는 후막 건식 접착 기술을 보유하고 있으며 이외에도 영상 구현을 위한 신호 제어 SW와 구동 MCU, 드라이버 등 하드웨어 구현 기술 보유

[그림] 창성시트의 필름형 투명 LED 디스플레이

※ 출처: 전자신문

[참고문헌]

- 중소기업 전략기술로드맵 2021-2023(디스플레이), 중소벤처기업부, 2020
- 중소기업 기술국산화 전략품목 상세분석(디스플레이), 중소벤처기업부, 2020
- 2021년 디스플레이 산업 10대 예측, IRS Global, 2021
- 디스플레이산업 기술·시장동향, 한국무역보험공사, 2019
- 러기드 디스플레이 시장, 연구개발특구진흥재단, 2021
- 글로벌 분업체계 변화에 대응하는 R&D 전략의 전환, STEPI, 2020
- 최근 디스플레이산업의 여건 변화와 전망, 한국은행 경기본부, 2021
- 디스플레이산업의 환경 변화와 발전 방안, 한국은행, 2020